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Coupling fields and underlying space curvature: An augmented Lagrangian approach
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We demonstrate a systematic implementation of coupling between a scalar field and the geometry of the
space which carries the field. This naturally gives rise to a feedback mechanism between the field and the
geometry. We develop a systematic model for the feedback in a general form, inspired by a specific imple-
mentation in the context of molecular dynamighe so-called Rahman-Parrinello molecular dynamics, or
RP-MD). We use a generalized Lagrangian that allows for the coupling of the space’s metric tensor to the
scalar field, and add terms motivated by RP-MD. We present two implementations of the scheme: one in which
the metric is only time-dependefftvhich gives rise to an ordinary differential equation for its temporal
evolution, and the other with spatiotemporal dependefwkerein the metric’'s evolution is governed by a
partial differential equation Numerical results are reported for the+1)-dimensional model with a nonlin-
earity of the sine-Gordon type.
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Recently, much attention has been focused on softstudying the time evolution of the box dynamigsaturally
condensed-matter objects, such as vesicles, microtubulesbtained through the Euler-Lagrange equations of the aug-
and membrane§l—4]. Many nanoscale physical systems, mented Lagrangian for the box degrees of freefjoiney
including nanotubes and electronic and photonic waveguidwere able to identify structural transitioriender external
structureg5,6], have nontrivial geometry and are influenced sheay from square to hexagonal patterns, fcc to bce, etc. In
by substrate effects. These classes of systems, many of whigh€ same spirit, a Lagrangian containing the curvature of a
are inherently nonlinear, raise the question of the interplaylal as an additional degree of freedom was introduced for
between nonlinearity and a substrate with variable curvaturetudying strained surfaces in R¢fl2]. We will hereafter
Of particular interest is a possibility of developing curvature€fér o this as the RP-MBRahman-Parrinello molecular
in the substrate due to forces generated by the nonline ynqmm? method. The Lagrangian for the particles and the
field. The resulting curvature can in turn affect the field, ~ P0X In this case reads

There is an increasing body of literature dealing with the 1 1
interplay of nonlinearity and a curved substrate. Usually, L== > msGsi— X V(r)+>WTr(fTf), (1)
however, the substrate geometry is assumed tfixed see, o B> 2
e.g., Ref.[7]. Nevertheless, for many applications it is rel- .
evant to introduce models that admit a flexible substrateWherem; is the mass of theth particle,s is its vectorial
which is affected by the field) that it carries, as well as Velocity, the spatial pai® of the spatiotemporal metric ten-
feeding back into the field dynamics. The equations shoul§Or_may be represented in terms of another mdtras G
include both the field dynamics proper and the feedback cou= f'f (G is positive definitg T and Tr denote the transpo-
pling to the substrate. Equations for the evolution of the subsition and trace respectivels;; andV are distances between
strate should in turn be affected by the evolution of the fieldthe particles and the potential of interaction between them,
A prototypical physical example of this type is Euler buck- andW is an effective mass of the box.
ling [8], where the evolution of a stress profile causes the Our purpose in this work is to extend the RP-MD meth-
underlying surface to bucklénd hence locally modify its ©odology to the case of a continuum scalar field, coupled to
curvature. either a spatially averaged geometric characterisicerage

In a discrete setting, a model of this type has recentlycurvature’), which will give rise to an ODEordinary differ-
been presented in RdB]. Some studies have also been per-ential equatiopy or to a spatiotemporal curvature field that
formed in a special case of the continuum limit of classicawill generate a PDEpartial differential equation The con-
spin systemgsuch as the Heisenberg chaitoupled to the tinuum field may represent, e.g., a chemical concentration
curvature; geometric frustration was found to arise in suctPropagating over a membrane, or in a salt solution, or an
settings[10]. envelope wave of the electric field in nanosystems. The spa-

About 20 years ago, a problem similar to the theme of outtiotemporal metric is assumed to have the simple form
study was examined in the context of molecular dynamics
modelling of structural transitions in crystals. In particular, in T 10
a series of papefdl], Rahman and Parrinello introduced a 9= 0o G/
new idea for studying such transitions by means of an aug-
mented Lagrangian that would account for the degrees dfVe will first consider the general case, whéses adxd
freedom of the “box”(the cel), to which MD is confined. In  matrix, d being the space dimension.
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FIG. 1. The top left panel shows the kink’s spatial profile-at0 in modelA. The initial kink profile(centered around the new center
position is shown by the dashed line, and is practically indistinguishable from the solution&fl. The bottom left panel shows smooth
oscillations off(t). The top and bottom right panels show, respectively, the kink’s veladity vs t, and the same quantity but fdr
=0.

One can define a field-type generalization of the RP-MD
model, with a scalar field, as follows: Wy = f ¢idx (7)
o] _gi 7% 1 _ o
di%| —g'l — o V(o) |+ E\/\/Tr(f f), (3  where the subscripts stand for the partial derivatives.

Notice that the functiori is directly related to the scalar

. . . . . curvature of the 1D space. In particular, the Ricci scalar,
whereV(¢) is a potential governing the nonlinear evolution which is R=2Ry,;,/det(g) [16] in the general case, in the
of the field ¢ andf = f(t). If f (and hence) is a function of _ 121285~ 2 '
both spatial coordinates and time, an elastic-energy fegn LD €ase IsR=—2f,/f, wheref=y1+f*. .
should be added to the Lagrangié8), so that it becomes On the other hand, for a metric with both spatial and

1 o 08 160
=f dix| — gl iia —¢—V(¢) f W] Tr(F7f) g os o
ax! gx) 2 T4 x° -
= 0z 120 pelitas
1_[ofT of M w0 ~
— —Tr (4) 0 50 100 , 150 200 0 o0 100 150
2 (9XI X 2 74

1 7.2
In this Brief Report, we propose two models that include = WM/\/\/\/\/\/VV\/W\ u© 7WWWWV\W’\M/WMM
the feedback to the curvature, and, simultaneously, admit a” y o5
particular solutions those with a flat metric. In particular, we y
chooseG=1+ f2 (so that the metric is positive definite and 0 R B 190 0 0oy 190
for f=0 has the original Minkowskian metric as a special
casg. Notice a deviation in our choice from the RP case of .
G =12 [14]. Equations(3) and (4) are general; we hereafter 4 °* < °
study thed=1 case.

Assuming initially thatf="f(t) (e.g., including only an % oo™ 150 o wo 150
effect of the “mean curvature” on the scalar-field dynamijcs
the Lagrangian3) becomes FIG. 2. The top left and right panels show, respectively, the
) breather in modeA at the end of the simulation periods 120, and
_ 1W'f2+ dx 1(a¢\? _1+f dg\? its position vs timgsolid), as compared to that which it would have
T2 2\ gt "2 lax V(d)|. moving at the initial velocityp =0.25 (dashedl The middle left

(5 panel shows the time evolution 6ft), while the middle right and
bottom left panels present exchange between the curvature-mode’s

The resulting equations of motigmodelA) are energyE=fZ/2+(%/4) [ $2dx and the rest of the energy,=E
—E;. Finally, the bottom right panel shows the time evolution of
b= (1+12) g — (VI ), (6)  the field ¢ at the center of the breather.
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FIG. 3. The left part of the figure shows spatial profiles of the figddmndf att=60 in modelB. It also shows the time evolution of the
energie€ ,=E—E; andEf=f(1/2)[ff+ f§+ (f ,)%12]dx, as well as the kink’s velocity as a function of time. The kink’s center is initially
atx=90, while the center of the curvature pulse ixat110. The right subplots show counterparts of those in the left part, but for the case
of the kink and curvature pulse initially centeredxat 110 andx= 90, respectively.

temporal dependende.g., forf=f(x,t)], one arrives at the

)2_

following Lagrangian:

L= [ dx i
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The ensuing equatioriseferred to as modeB) are

bu=[(1+ ) B 1= (VIdh),

W =Wy, — .

®)

9

(10

As a particular application of modebs andB, we exam-
ine the physically ubiquitous sine-GordgsG) potential,
V(¢)=1—cos(®) [15]. It is clear that Egs(6) and (7) and
(9) and (10) have particular solutions with=0, for which

the second equation in each pair is satisfied trivially, while

the first equation reduces to the sG equation. Basic solitary-
wave solutions of the sG equation are the topological soliton
(kink),

D (x,t)=4tan Yexd y(x—xo—vt)]}, (11

where v is its velocity, y=(1—v?) "2 is the Lorentz
factor, andx, is the initial position of the kink’s center, and
the breather,¢p(x,t)=4 tan 1(\(1— 0?)/w’sinfoyt—uv(x

—xo) Isechi yy1— w?(x—x,—vt)]), where o is the fre-
guency of its internal oscillations Qw<1).

The results of the interaction of the kink with the curva-
ture in modelA are shown in Fig. 117]. The curvature
variablef, initialized with a small random value, performs
smooth oscillations with a frequency af~2.866. Notice
that this is natural in this case, since the kink has an approxi-
mately fixed “mass,’M = [ ~ZuZdx, which can be found to
be M =8.247 for the velocityy~0.25. Then, Eq(7) pre-
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reduces the kink’s velocity, while the interaction with the

which is very close to the numerically exact value. Fastcopropagating pulse gives rise to an increase of the velocity.

small-amplitude oscillations of the kink’s velocity, observed
in Fig. 1 both with and without the curvature, are due to
“hopping” over sites of a latticgwith spacingh=0.1) em-
ployed in the numerical scheme which solves Ef). No-

In particular, in the former case, the mean speed of the kink
after the collision is=0.2476, while in the latter one, it
increases te=0.2527. Notice that in both cases a small frag-
ment of the pulse that collides with the kink passes through

tice, however, that in the top panel the mean velocity isit, while a larger fraction of the pulse is reflected by it.

~0.2503, while in the bottom panel it 10.2499, hence the
curvature oscillations increase the kink’s velocity. This may.

In conclusion, we have proposed a field theory in the
spirit of the Rahman-Parrinello molecular dynamics tech-

be anticipated due to the presence of the positive definitﬁique_ The resulting equations couple the spatiotemporal

factor (1+ f2) in front of ¢y, in Eq. (6), which is expected to
renormalizev?.

The curvature-breather interaction in modeak shown in
Fig. 2. The frequency of the breather does not change si
nificantly (it fluctuates between 0.87 and 0.93), but its am-
plitude decreases substantiallyy more than 50%), result-
ing in its becoming much more mobiléthe velocity
increases te=0.425 from the initial value 0.25).

In model B, we examine the collision of a kink with a
localized pulse of the substrate fieldfor the breather, we
have obtained results which are qualitatively similar to thos
presented below for the kifnkWe create the curvature pulse
to the left or to the right of the kink. A&, vanishes far from
the kink, Eq.(10) for f becomes a linear wave equation.
Hence, we observe splitting of the pulse into left- and right-
traveling ones. In the case where the kink is initially to the
left of the pulse, it collides with the left-propagating frag-
ment of the(split) pulse. In the opposite case, the kink is

evolution of the field to that of the underlying curvature of
the space which carries the field. Coupled equations for the
temporal or spatiotemporal evolution of the metric are ob-
ained in a general setting, and, as an example, are solved
together with the sine-Gordon field equation. The temporal
evolution of the metric increases the velocity of the field
solitons. The spatiotemporal evolution of the metric can in-
crease or decrease their speed.

It would be particularly interesting to extend the modgls
andB to higher dimensions. It is also worth studying how the

Socal evolution of the curvature affects kinematics and dy-

namics of the solitons, and to correlate such observations
with the behavior of reactant chemical concentrations in
chemical or biological environments with nontrivial geom-
etry [18].
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