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Coupling fields and underlying space curvature: An augmented Lagrangian approach
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We demonstrate a systematic implementation of coupling between a scalar field and the geometry of the
space which carries the field. This naturally gives rise to a feedback mechanism between the field and the
geometry. We develop a systematic model for the feedback in a general form, inspired by a specific imple-
mentation in the context of molecular dynamics~the so-called Rahman-Parrinello molecular dynamics, or
RP-MD!. We use a generalized Lagrangian that allows for the coupling of the space’s metric tensor to the
scalar field, and add terms motivated by RP-MD. We present two implementations of the scheme: one in which
the metric is only time-dependent~which gives rise to an ordinary differential equation for its temporal
evolution!, and the other with spatiotemporal dependence~wherein the metric’s evolution is governed by a
partial differential equation!. Numerical results are reported for the (111)-dimensional model with a nonlin-
earity of the sine-Gordon type.
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Recently, much attention has been focused on s
condensed-matter objects, such as vesicles, microtub
and membranes@1–4#. Many nanoscale physical system
including nanotubes and electronic and photonic wavegu
structures@5,6#, have nontrivial geometry and are influenc
by substrate effects. These classes of systems, many of w
are inherently nonlinear, raise the question of the interp
between nonlinearity and a substrate with variable curvat
Of particular interest is a possibility of developing curvatu
in the substrate due to forces generated by the nonlin
field. The resulting curvature can in turn affect the field.

There is an increasing body of literature dealing with t
interplay of nonlinearity and a curved substrate. Usua
however, the substrate geometry is assumed to befixed, see,
e.g., Ref.@7#. Nevertheless, for many applications it is re
evant to introduce models that admit a flexible substra
which is affected by the field~s! that it carries, as well as
feeding back into the field dynamics. The equations sho
include both the field dynamics proper and the feedback c
pling to the substrate. Equations for the evolution of the s
strate should in turn be affected by the evolution of the fie
A prototypical physical example of this type is Euler buc
ling @8#, where the evolution of a stress profile causes
underlying surface to buckle~and hence locally modify its
curvature!.

In a discrete setting, a model of this type has recen
been presented in Ref.@9#. Some studies have also been p
formed in a special case of the continuum limit of classi
spin systems~such as the Heisenberg chain! coupled to the
curvature; geometric frustration was found to arise in su
settings@10#.

About 20 years ago, a problem similar to the theme of
study was examined in the context of molecular dynam
modelling of structural transitions in crystals. In particular,
a series of papers@11#, Rahman and Parrinello introduced
new idea for studying such transitions by means of an a
mented Lagrangian that would account for the degrees
freedom of the ‘‘box’’~the cell!, to which MD is confined. In
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studying the time evolution of the box dynamics~naturally
obtained through the Euler-Lagrange equations of the a
mented Lagrangian for the box degrees of freedom!, they
were able to identify structural transitions~under external
shear! from square to hexagonal patterns, fcc to bcc, etc
the same spirit, a Lagrangian containing the curvature o
slab as an additional degree of freedom was introduced
studying strained surfaces in Ref.@12#. We will hereafter
refer to this as the RP-MD~Rahman-Parrinello molecula
dynamics! method. The Lagrangian for the particles and t
box in this case reads

L5
1

2 (
i

mi ṡ iGṡ i2 (
i , j . i

V~r i j !1
1

2
WTr~ ḟ T ḟ !, ~1!

wheremi is the mass of thei th particle, ṡi is its vectorial
velocity, the spatial partG of the spatiotemporal metric ten
sor may be represented in terms of another matrixf as G
5 f Tf (G is positive definite!. T and Tr denote the transpo
sition and trace respectively,r i j andV are distances betwee
the particles and the potential of interaction between the
andW is an effective mass of the box.

Our purpose in this work is to extend the RP-MD met
odology to the case of a continuum scalar field, coupled
either a spatially averaged geometric characteristic~‘‘average
curvature’’!, which will give rise to an ODE~ordinary differ-
ential equation!, or to a spatiotemporal curvature field th
will generate a PDE~partial differential equation!. The con-
tinuum field may represent, e.g., a chemical concentra
propagating over a membrane, or in a salt solution, or
envelope wave of the electric field in nanosystems. The s
tiotemporal metric is assumed to have the simple form

g5S 21 0

0 GD . ~2!

We will first consider the general case, whereG is a d3d
matrix, d being the space dimension.
©2003 The American Physical Society02-1
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FIG. 1. The top left panel shows the kink’s spatial profile att560 in modelA. The initial kink profile~centered around the new cent
position! is shown by the dashed line, and is practically indistinguishable from the solution att560. The bottom left panel shows smoo
oscillations of f (t). The top and bottom right panels show, respectively, the kink’s velocityv(t) vs t, and the same quantity but forf
50.
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One can define a field-type generalization of the RP-M
model, with a scalar fieldf, as follows:

L5E ddxF2gi j
]f

]xi

]f

]xj
2V~f!G1

1

2
WTr~ ḟ T ḟ !, ~3!

whereV(f) is a potential governing the nonlinear evolutio
of the fieldf and f 5 f (t). If f ~and henceG) is a function of
both spatial coordinates and time, an elastic-energy term@13#
should be added to the Lagrangian~3!, so that it becomes

L5E ddxF2gi j
]f

]xi

]f

]xj
2V~f!G1E ddxH 1

2
WFTr~ ḟ T ḟ !

2
1

2
TrS ] f T

]xi

] f

]xi D G J . ~4!

In this Brief Report, we propose two models that inclu
the feedback to the curvature, and, simultaneously, adm
particular solutions those with a flat metric. In particular, w
chooseG511 f 2 ~so that the metric is positive definite an
for f 50 has the original Minkowskian metric as a spec
case!. Notice a deviation in our choice from the RP case
G5 f 2 @14#. Equations~3! and ~4! are general; we hereafte
study thed51 case.

Assuming initially that f 5 f (t) ~e.g., including only an
effect of the ‘‘mean curvature’’ on the scalar-field dynamic!,
the Lagrangian~3! becomes

L5
1

2
W ḟ21E dxF1

2 S ]f

]t D 2

2
11 f 2

2 S ]f

]x D 2

2V~f!G .
~5!

The resulting equations of motion~modelA) are

f tt5~11 f 2!fxx2~]V/]f!, ~6!
04760
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l
f

W ftt52 f E fx
2dx, ~7!

where the subscripts stand for the partial derivatives.
Notice that the functionf is directly related to the scala

curvature of the 1D space. In particular, the Ricci sca
which is R52R1212/det(g) @16# in the general case, in th
1D case isR522 f̃ t t / f̃ , where f̃ 5A11 f 2.

On the other hand, for a metric with both spatial a

FIG. 2. The top left and right panels show, respectively,
breather in modelA at the end of the simulation period,t5120, and
its position vs time~solid!, as compared to that which it would hav
moving at the initial velocity,v50.25 ~dashed!. The middle left
panel shows the time evolution off (t), while the middle right and
bottom left panels present exchange between the curvature-mo
energyEf5 f t

2/21( f 2/4)*fx
2dx and the rest of the energyEf5E

2Ef . Finally, the bottom right panel shows the time evolution
the fieldf at the center of the breather.
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FIG. 3. The left part of the figure shows spatial profiles of the fieldsf andf at t560 in modelB. It also shows the time evolution of th
energiesEf5E2Ef andEf5*(1/2)@ f t

21 f x
21( f fx)

2/2#dx, as well as the kink’s velocity as a function of time. The kink’s center is initia
at x590, while the center of the curvature pulse is atx5110. The right subplots show counterparts of those in the left part, but for the
of the kink and curvature pulse initially centered atx5110 andx590, respectively.
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temporal dependence@e.g., for f 5 f (x,t)], one arrives at the
following Lagrangian:

L5E dxF1

2 S ]f

]t D 2

2
11 f 2

2 S ]f

]x D 2

2V~f!G
1E dxFW

2 S ] f

]t D
2

2
W

2 S ] f

]xD 2G . ~8!

The ensuing equations~referred to as modelB) are

f tt5@~11 f 2!fx#x2~]V/]f!, ~9!

W ftt5W fxx2 f fx
2 . ~10!

As a particular application of modelsA andB, we exam-
ine the physically ubiquitous sine-Gordon~sG! potential,
V(f)512cos(f) @15#. It is clear that Eqs.~6! and ~7! and
~9! and ~10! have particular solutions withf 50, for which
04760
the second equation in each pair is satisfied trivially, wh
the first equation reduces to the sG equation. Basic solit
wave solutions of the sG equation are the topological soli
~kink!,

fk~x,t !54 tan21$exp@g~x2x02vt !#%, ~11!

where v is its velocity, g5(12v2)21/2 is the Lorentz
factor, andx0 is the initial position of the kink’s center, an
the breather,fbr(x,t)54 tan21

„A(12v2)/v2sin$vg@t2v(x
2x0)#%sech@gA12v2(x2x02vt)#…, where v is the fre-
quency of its internal oscillations (0,v,1).

The results of the interaction of the kink with the curv
ture in modelA are shown in Fig. 1@17#. The curvature
variable f, initialized with a small random value, perform
smooth oscillations with a frequency ofv'2.866. Notice
that this is natural in this case, since the kink has an appr
mately fixed ‘‘mass,’’Mk5*2`

1`ux
2dx, which can be found to

be Mk58.247 for the velocityv'0.25. Then, Eq.~7! pre-
2-3
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dicts the frequency of these oscillationsv'AMk52.871,
which is very close to the numerically exact value. F
small-amplitude oscillations of the kink’s velocity, observ
in Fig. 1 both with and without the curvature, are due
‘‘hopping’’ over sites of a lattice~with spacingh50.1) em-
ployed in the numerical scheme which solves Eq.~7!. No-
tice, however, that in the top panel the mean velocity
'0.2503, while in the bottom panel it is'0.2499, hence the
curvature oscillations increase the kink’s velocity. This m
be anticipated due to the presence of the positive defi
factor (11 f 2) in front of fxx in Eq. ~6!, which is expected to
renormalizev2.

The curvature-breather interaction in modelA is shown in
Fig. 2. The frequency of the breather does not change
nificantly ~it fluctuates between 0.87 and 0.93), but its a
plitude decreases substantially~by more than 50%), result
ing in its becoming much more mobile~the velocity
increases to'0.425 from the initial value 0.25).

In model B, we examine the collision of a kink with a
localized pulse of the substrate fieldf ~for the breather, we
have obtained results which are qualitatively similar to tho
presented below for the kink!. We create the curvature puls
to the left or to the right of the kink. Asfx vanishes far from
the kink, Eq. ~10! for f becomes a linear wave equatio
Hence, we observe splitting of the pulse into left- and rig
traveling ones. In the case where the kink is initially to t
left of the pulse, it collides with the left-propagating fra
ment of the~split! pulse. In the opposite case, the kink
eventually caught by the copropagating right fragment of
~split! pulse. Numerical simulations shown in Fig. 3 demo
strate that the collision with the counterpropagating pu
s:
.
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reduces the kink’s velocity, while the interaction with th
copropagating pulse gives rise to an increase of the velo
In particular, in the former case, the mean speed of the k
after the collision is'0.2476, while in the latter one, i
increases to'0.2527. Notice that in both cases a small fra
ment of the pulse that collides with the kink passes throu
it, while a larger fraction of the pulse is reflected by it.

In conclusion, we have proposed a field theory in t
spirit of the Rahman-Parrinello molecular dynamics tec
nique. The resulting equations couple the spatiotemp
evolution of the field to that of the underlying curvature
the space which carries the field. Coupled equations for
temporal or spatiotemporal evolution of the metric are o
tained in a general setting, and, as an example, are so
together with the sine-Gordon field equation. The tempo
evolution of the metric increases the velocity of the fie
solitons. The spatiotemporal evolution of the metric can
crease or decrease their speed.

It would be particularly interesting to extend the modelsA
andB to higher dimensions. It is also worth studying how t
local evolution of the curvature affects kinematics and d
namics of the solitons, and to correlate such observati
with the behavior of reactant chemical concentrations
chemical or biological environments with nontrivial geom
etry @18#.
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